Breaking Grad(ients) : CS 7643

Juan Raul de la Guardia
jguardia7@gatech.edu

1. Introduction/Background/Motivation

In recent years, Al-generated deepfake images have
become increasingly realistic, making it difficult to dif-
ferentiate between artificially generated and real, human-
generated images. Current computer vision models have
also evolved to discriminate between the two reasonably
well, but they are susceptible to adversarial examples [19,

, 8] that can affect multiple target classes. Bad actors
can meaningfully disrupt both classification models and hu-
mans [4], sometimes even with a single attack [6]. This
problem is especially relevant in cases such as public trust,
political misinformation, cybersecurity, and fraud preven-
tion. We take a cybersecurity approach to discover ad-
versarial attacks that disrupt common pre-trained models
(red team), such as EfficientNet and Vision Transformers,
and build training methods to effectively handle the attacks
(blue team). Our objectives are: 1) to find models that can
distinguish between real images and Al-generated ones, 2)
to find scalable attack mechanisms that significantly reduce
the performance of these models when distinguishing im-
ages, and 3) to build and test defense mechanisms to protect
against these attacks that also generalize well to other cases.
We hypothesize that a targeted white-box attack will be able
to efficiently impact classification performance more than a
random perturbation in the test data. We also believe that
a hybrid defense approach with data augmentation and ad-
versarial training can best help protect against these attacks
[23].

Current Al image detection classification models such
as CNNs and Vision Transformers (ViT) can learn low level
features and representations of images. These features can
be used in several computer vision problems, such as im-
age classification and object detection. However, Goodfel-
low et al [8] proved that an untargeted one-step perturbation
to the gradient of the loss is enough to cause the model to
incorrectly detect these features, thus causing it to output
an incorrect answer with high confidence. This perturba-
tion specifically is called the Fast Gradient Sign Method
(FGSM). They argued that this vulnerability in the clas-
sification models is due to the piecewise linearities within
the neural network structures. Because both CNNs and ViT
models have these linearities, they are inherently suscepti-

Pong-Ravee Halelamien

win.halelamien@gatech.edu

Ethan Maluhia Roberts

eroberts68fgatech.edu

Anna Zhu

azhu95@gatech.edu

ble to gradient-based attacks. Results show that FGSM is
an effective white-box attack, surpassing the performance
of data-based attacks like image distortion. We need to re-
liably distinguish between AI and human-generated images
in order to establish authenticity and trust. This is difficult
to perform accurately at scale, especially in areas like cy-
bersecurity, medicine, and law where misclassification has
high penalties. Businesses and individuals can be suscep-
tible to financial and reputational damage. Misdiagnosing
patients or responding incorrectly to public health crises
can cause bodily harm or death. Errors in law, scientific
research, and education have the power to affect entire pop-
ulations and even nations in cases of political interference.
Analyzing attack and defense mechanisms can help protect
against bad actors, especially when they use methods like
FGSM that are imperceptible to the human eye.

1.1. Data

This project is based on a Kaggle competition [10]
called “Detect Al vs. Human-Generated Images” with a
static, labeled dataset provided by the competition. Each
real stock image sampled from Shutterstock has a paired
Al-generated version created by DeepMedia using “state-
of-the-art generative models”, so real and fake class labels
are balanced where O represents real images and 1 repre-
sents Al-generated images. The training dataset has a total
of 79950 images of varying sizes where one-third of all im-
ages feature humans [15]. There is an unlabeled test dataset
that was not used; instead, the original training dataset was
split into train-test datasets. DeepMedia does not specify
which image generation models were used but the method
of feeding generated text to the model is zero-shot image
generation, so there is some consistency with how the Al-
generated images were created. Figure | shows an example
from the original training dataset, along with generated text
that was used to create its Al-generated equivalent.

Photo of a young black couple, both with medium-dark skin, standing in front of a plain pink
background. The woman has a large afro and is wearing round glasses, a sleeveless lavender top,
and has her hand on her chin with a surprised expression. The man has a short afro, a goatee, and is
wearing a light blue t-shirt. He has his hands clasped together and is also looking surprised. The...

Figure 1: Example of the original Shutterstock image on the
right, generated text of a description of the image, and the
Al-generated image on the left [10]

2. Approach

Our approach consisted of implementing and testing
three image classification models on the image classifica-
tion problem: EfficientNet, Vision Transformer, and a cus-
tom CNN model. Each of these was tested against six con-
figurations: (1) the baseline test dataset, (2) a series of ran-
dom noise robustness test datasets, (3) an FGSM white-box
attack [9], (4) an FGSM white-box attack with data aug-
mentation, (5) an FGSM white-box attack with adversarial
training [1 1], and (6) an FGSM white-box attack with hy-
brid data augmentation and adversarial training.

2.1. Preprocessing and Exploratory Data Analysis

For preprocessing, images were all resized to 224x224
and normalized to mean and standard deviation RGB values
from ImageNet (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]). This helps to keep gradients and learning
stable. In exploring the dataset, the images’ RGB, HSV, and
HSL values were averaged across all images and by chan-
nel and label. While the red, green, blue, hue, value, and
lightness channels had similar average values with similar
standard deviations, the average saturation was noticeably
higher at a value of 137 in Al-generated images versus 90
in human-generated images. Plotting the channels as a his-
togram with values between 0 to 255 on the X-axis, it was
found that Al-generated images had more pixels that were
oversaturated (saturation value of 255) compared to human-
generated images at 14% and 5%, respectively.

2.2. EfficientNet

To balance quality, computational efficiency, and
model complexity, we chose EfficientNet-BO because it was
the most appropriate convolutional neural network (CNN)
for the dataset given time and resource constraints for this
project. Its key innovation is its compound coefficient that
allows uniform scaling of its depth o?, width 5¢, and res-
olution 7% using a single parameter, making it easy for the
model to adapt to data and constraints [17]:

a-f%-42x2 where a>1,4>1,v>1 (1)

The compound coefficient controls resourcing for model
scaling while «, 3, v allocate resources to each dimension.
It addresses the challenge of balancing the dimensions with
model architecture, since the efficacy of structures such as
receptive field size are dependent on the dimensions of the
input image. For example, larger, higher resolution images
should have proportionally larger receptive fields available
to capture both global and finer details.

2.3. Vision Transformer and Data Efficient Image
Transfomer

Vision Transformer (ViT) is currently one of the best-
performing image classification models [3]. It takes input
images as a sequence of patches, vectorizes them into em-
beddings with their positional encodings, and feeds them
into a transformer encoder. ViTs utilize longer ranged de-
pendencies than CNNSs using self-attention [20]. This al-
lows for a more global understanding of an image, as com-
pared to CNNs’ more local focus on attributes like texture.
Because ViTs lack strong invariance like CNNs, they re-
quire more training data. Data Efficient Image Transform-
ers (DeiTs) are based on the same architecture as ViTs, but
are trained on smaller datasets [8]. DeiTs use distillation
to learn from CNNs or larger ViTs, producing lightweight
models and faster training times. Since we are prioritizing
smaller models, we used Facebook tiny distilled DeiT [18].
Typical ViTs use the standard cross-entropy loss. DeiTs use
a weighted loss function that combines cross-entropy loss
Losscp and distillation loss Lossp, specifically the KL
divergence. This loss, originally outlined in the transfor-
mation from BERT to DistillBERT [16], allows the distilled
student model to mimic the heavyweight model’s loss func-
tion. The total loss function is a weighted sum of losses
where and are weight parameters:

Loss = « - Loss¢g + B - Lossp 2)

2.4. JuanchitoCNN

JuanchitoCNN is a custom, lightweight 3-layer CNN.
Each layer consists of a Conv-BatchNorm-ReLU block fol-
lowed by a max-pooling layer. This block structure is par-
tially inspired by the ResNet-50 residual blocks, and it was
chosen because ResNET has been shown to be very efficient
in distinguishing Al-generated images [21]. The final layer
is a fully connected layer and two-category softmax with a
standard cross-entropy loss function, which was chosen as
a standard function for a two-class classification problem
This model was built for speed and efficiency, and is the
only model trained solely on this dataset, so it serves as a
comparison to the other models that are both more complex
and not specifically trained on this dataset. In testing, the
model was surprisingly effective, so further layers were not
deemed necessary for the purposes of this project. Figure 2
shows the CNN architectural design.

conv1
conv2
/ conv3
27 fc
pa
o |/
75 Y 7 2sx2sx2e 15.000x1
il 54 x 54 x 12 Conv-BatchNorm-ReLU
max pool

|
7 4 g
'}? 1M11x111x6 1 fully connected
Ly L
1 softmax

224 x224x 3

Figure 2: JuanchitoCNN Architectural Diagram

2.5. Model Comparison and Hypotheses

Each of the three models have different attributes at an
input resolution of 224x224. We analyzed the number of pa-
rameters, Floating Point Operations per Second (FLOPS),
and Top-1 accuracy to draw hypotheses for each. The num-
ber of parameters describes how large a model is, which is
associated with a greater capacity to learn more complex
patterns and relationships in the data. It also typically re-
quires more memory and computation time. FLOPS is a
measure of computing performance. For these models, they
are a measure of how many computations are needed to run
inference, where lower values mean fewer computations to
produce a result at inference. Top-1 accuracy is the standard
accuracy metric, where the class with the highest probabil-
ity is assigned to the predicted label. Standard practice is to
base top-1 accuracy on the ImageNet- 1k dataset, with Juan-
chitoCNN trained and tested on a subset of this dataset. [5].
Table 1 shows the results.

Table 1: Models Comparison

Model Parameters
EfficientNet-BO 5.3M 0.39G 77.1%
DeiT-tiny distilled 6M 2.16G 74.5%

JuanchitoCNN 39k (38,642) 0.09G 2.0%

For EfficientNet and DeiT, we used default model
weights and applied transfer learning. Then we fine-tuned
it and performed hyperparameter tuning. JuanchitoCNN is
not pre-trained, has the smallest number of parameters, and
is the least complex, so we expect it to run the fastest but
it should perform poorly and underfit this data in all sce-
narios. We believe EfficientNet will perform the best for

both random perturbations on the test input and adversar-
ial attacks because it encodes spatial hierarchies and more
global semantic information, while the DeiT model relies
on distilled knowledge from a CNN teacher that may not be
relevant. Because DeiT has this weaker inductive bias com-
pared to CNNs, we expect that the impact of an adversarial

softmaxattack would be greatest on this model. For the same reason,

we hypothesize that data augmentation should provide the
least benefit to the DeiT model, since it is more dependent
on quantity of data for performance.

2.6. Random Perturbation Input

To get a baseline for model robustness, we tested the
models on random perturbations to the test data to simu-
late poor data quality or data corruption generated using the
Albumentations library [1]. We expect that models least ro-
bust to random perturbations would benefit most from data
augmentation. Whether there is a correlation between this
robustness and adversarial attack and training is unknown.
This seems to be a new approach so we will analyze it for
findings.

2.7. Adversarial Attack

Our approach for attack is the Fast Gradient Sign
Method (FGSM) method for all models since the same ad-
versarial examples tend to fool more than one model [19],
so it should generalize well. This is a well-studied, simple,
and fast white-box method. It is also considered a targeted
attack, since we have access to labels. FGSM is only im-
plemented at inference for attack. FGSM perturbs an input
image in the direction that would most increase the model’s
loss. Formally,

Zadversarial = £ 1 € Slgn(v”ﬂ](aa &€, y)) (3)

where 6 is the parameters of the model, x is the input to
the model, y is the labels, ¢ is a tunable parameter, and
J(0,x,y) is the loss function. The main finding of this ap-
proach is that an imperceptibly small perturbation, whose
elements share the same sign as the gradient of the loss

FLOPS Top-1 Accuracyfunction to the pixels, can change the classification of the

model with high confidence, as shown in Figure 3

| I

+.007 x

T+
esign(V,.(8, 2, y))
“panda” “nematode” “gibbon”

x sign(VeJ (0, z,y))

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 3: A demonstration of FGSM from Goodfellow et al
[8] applied to GoogLeNet on ImageNet

2.8. Defense
2.8.1. Data Augmentation

A good general strategy to improve generalization is
data augmentation. Using flips, random image brightness,
and Gaussian noise to augment the training samples based
on Yang et al [22] and Zantedeschi et al [23] should help
the models improve their performance.

2.8.2. Adversarial Training

A more targeted, gradient-based defensive strategy is
adversarial training, where we use the same approach that
we implemented in the attack step to disrupt images and
then perform training with the correct labels. The objective
is for the model to learn how the images are perturbed using
FGSM attack and then successfully defend against it.

2.8.3. Hybrid Approach

While some previous research shows that increasing
the capacity of the network alone is helpful in adversarial
robustness against one-step perturbations like FGSM [12],
we chose a hybrid training method in which we first per-
formed data augmentation in our dataset in addition to our
adversarial training with FGSM. We expect this method to
be the most robust, as the model should be learning compli-
cated images and their labels [23].

2.9. Challenges
2.9.1. Visual Quality, Style, and Hue/Saturation

Upon visual inspection of the dataset, the Al-generated
images tended to be more oversaturated compared to
human-generated images. The Al-generated images also
used a cartoonish style, which meant that it was very easy
for us to distinguish between real and Al-generated images.
Because of this, we suspected that the original objective
from the Kaggle competition to build a model that correctly
identified real vs Al-generated images was going to have
issues with overperformance.

2.9.2. Pre-trained Models Performing Too Well

Our initial objective was to find a model that could ef-
fectively distinguish between real images and Al-generated
images. We predicted that large models would be relatively
effective for this problem. Our predictions were correct; as
the experimental results show from Trial 1, all models per-
formed above 90% accuracy for both the pre-trained, fine-
tuned models and the model trained on only the training
data, which was highly above our expectations. Optimizing
this would be trivial, so we pivoted to building a compre-
hensive adversarial attack and defense experiment on these
models to explore the nature of deep learning model attacks
and build better protections against them.

3. Experiments and Results

We compared models using accuracy only, since this
is the standard metric for classification models. We ex-
pected our base trial (trial 1) to have good accuracy, while
the attack trials should have lower accuracy (trials 3-6). For
the attack methods, we considered them very effective if
they lowered accuracy to 50% or less (no better than a coin
flip) or if they represented a significant reduction in perfor-
mance. For the defense methods (trials 4-6), we considered
them effective if they represented improved performance
against our base FGSM attack test case (trial 3). See full
results in table 3 and code [2].

3.1. Trial 1: Base Model and Data

We started with default EfficientNet weights that were
trained on ImageNet-1K and fine-tuned it with 80% of the
labeled data, then tested with the remaining 20%. Each
epoch took approximately 5 minutes to train on an NVIDIA
2070 Super. The accuracy of the test data was 99.74%. A
grid search was performed with different size magnitudes
for learning rate, weight decay, and momentum and both
SGD and AdamW optimizers. The epochs were left at 5 to
avoid overfitting, which was seen at 10 epochs, and batch
size was set to 16 due to computational resources.

For ViT/DeiT, we started with the Google ViT-base-
patch16-224 model [3] and even though it performed at
99.87% accuracy, it was too large for efficient training at
9 hours per epoch. We changed to the Facebook DeiT-tiny-
distilled-patch16-224 [18, 13] model which trained at 15
min per epoch. This model was also fine-tuned with an
80/20 train-test split. After tuning different hyperparame-
ters, our best performance was 92.65% accuracy.

Our custom CNN model, JuanchitoCNN, had a perfor-
mance above 90% on our initial run. After hyperparameter
tuning, and adjusting optimizer choices, we were able to
achieve an accuracy of 92.80%. This was considered very
successful for a lightweight model, so the model was cho-
sen as a baseline.

3.2. Trial 2: Random Perturbation Input

We perturbed the test data with methods from the Al-
bumentations Vision Tool [!] that would not semantically
alter the images. We tested four perturbations: SaltPepper,
which adds single white and black pixels throughout the im-
age; Posterize, which reduces the number of bits for each
color channel; GaussianNoise, which adds Gaussian noise
to the image; and RandomShadow, which simulates shad-
ows for the image by reducing the brightness in random ar-
eas of the image. The results of these experiments are in ta-
ble 5. EfficientNet did not seem to be affected by Gaussian-
Noise or Random Shadow, but was affected by Posterize
and SaltPepper at 92.03% and 77.62%, respectively. Juan-
chitoCNN was significantly affected by the perturbations,

Table 2: Model Hyperparameters

Model Epochs Learning Batch Size Momentum Weight De- Optimizer
Rate cay

EfficientNet-BO 5 0.1 16 0 0.1 SGD

DeiT-tiny distilled 5 0.0002 32 - 0.01 AdamW

JuanchitoCNN 5 0.001 32 0.001 - AdamW
Table 3: Model Accuracy Results at ¢ = 0.1

Model €)) Base (2) Random (3) FGSM At- (4) Data Aug- (5) Adversar- (6) Hybrid

Model Perturbation tack mentation ial Training

EfficientNet-BO 99.74% 99.42% 13.39% 46.74% 44.47% 46.52%

DeiT-tiny distilled 92.65% 92.25% 41.86% 35.97% 50.09% 44.85%

JuanchitoCNN 92.80% 80.20% 41.72% 0.20% 22.68% 39.73%

likely because of its small capacity. DeiT was more ro-
bust to all perturbations with accuracies around 91% likely
because of the self-attention architecture between patches.
Overall, the random perturbations performed as expected on
lowering accuracies unevenly across different models, with
no model significantly affected.

3.3. Trial 3: White Box FGSM Attack

This trial included an FGSM attack at e = 0.1 into
the pretrained models’ gradients. We tuned based on re-
search, visual quality, and experimental results. Our attacks
were extremely effective, decreasing EfficientNet accuracy
to 13.39% (86.35% decrease), DeiT to 41.86% (54.82% de-
crease), and JuanchitoCNN to 41.72% (51.08% decrease).
Training and validation loss curves for all models were sta-
ble, showing that FGSM attack can be undetectable and
works well to attack models with stealth. Contrary to
our hypothesis, EfficientNet was the most affected by the
FGSM attack. JuanchitoCNN was significantly affected,
likely because the model is very small, so it is unable to
encode enough features to defend against the attack. CNNs
have been shown to be biased towards learning from tex-
tures [7], so this can be a factor in the reduced accuracy.
These results have no correlation with the random perturba-
tion input trial but successfully outperformed the random
perturbation inputs, showing that targeted gradient-based
attacks are more effective at disrupting these classification
models.

3.4. Trial 4: FGSM Defense - Data Augmentation

Maintaining the same FGSM attack as before, this trial
features data augmentation to enhance the robustness of the
model. The data augmentation techniques used were hor-
izontal flip with 50% chance and random brightness and

contrast adjustments with 20% chance. All augmented im-
ages were then normalized to the same RGB mean and stan-
dard deviation values as ImageNet. We kept the same num-
ber of training samples, so images were augmented without
replacement and the model was not trained on the unaug-
mented versions of the augmented images. Notably, the
validation loss for JuanchitoCNN had a significant peak
at epoch 3, implying unstable inference. The EfficientNet
model accuracy was 46.74%, which is a 33.35% improve-
ment over Trial 3 with only FGSM attack. This shows that
data augmentation was successful in providing some de-
fense to the FGSM attack. The DeiT model accuracy was
35.97%, which is a 5.89% decrease over Trial 3 and shows
consistently mild negative reactions to data augmentations
and perturbations like in Trial 2. Our hypothesis was that
the weak inductive bias in DeiT could make it slightly neg-
atively sensitive to data-related changes, but we did not ex-
pect it to perform worse than the non-augmented model.
JuanchitoCNN performed worse with augmented data than
with regular data when attacked, going down to 0.20% ac-
curacy which is a 41.52% decrease. The random augmen-
tations were not effective in improving the model perfor-
mance, perhaps because the changes were not captured cor-
rectly by such a small model.

3.5. Trial 5: FGSM Defense - Adversarial Training

In Trial 5, we added FGSM adversarial training with
e = 0.1 as a defense to FGSM adversarial attack in the
hopes that training a model on the same gradient-based at-
tack would make it robust to the attack. Loss curves showed
high validation loss compared to training loss for all three
models, suggesting that none of the models are generalizing
particularly well. The FGSM defense with adversarial train-
ing for EfficientNet had a slightly lower accuracy of 44.47%

compared to the Trial 4 FGSM defense with augmented data
which had an accuracy of 46.74%. It represents a 31.08%
improvement over Trial 3 with FGSM attack only. Both
data-based and gradient-based defenses seem effective on
EfficientNet. DeiT performed the best of the three models
with an accuracy of 50.09%, which is a 8.23% improvement
over Trial 3. Adversarial training provides a mild improve-
ment to DeiT which is much better than the data augmen-
tation in Trial 4. This suggests that its architecture is more
receptive to gradient-based training than data-based. For
JuanchitoCNN, adversarial training was significantly more
effective than using augmented training data, with an ac-
curacy of 22.68%. It was still worse than Trial 3 FGSM at-
tack with no defense that had an accuracy of 41.72%, which
leads us to believe that this defense is not helping the model.
We believe that the images are too complex for the simple
model to effectively learn how adversarial attacks work, so
it is unable to defend against them.

3.6. Trial 6: FGSM Defense - Hybrid

We implemented a hybrid defense with both data aug-
mentation and adversarial training, which was effectively
a combination of Trials 4 and 5. EfficientNet performed
nearly identically to the purely augmented trained model at
46.52%, a 0.18% difference. However, its validation loss
curve had a very high peak at epoch 3 an order of mag-
nitude larger than expected, so its inference is not as sta-
ble as the Trial 4 augmented model. DeiT model had an
accuracy of 44.85%, which is a 2.99% improvement over
the Trial 3 attack-only model but it did not perform as well
as the model trained only with adversarial data. Its vali-
dation loss curve is also unstable, so we hypothesize that
data augmentation and adversarial training have conflicting
objectives with respect to the DeiT architecture. For Juan-
chitoCNN, hybrid training was surprisingly more effective
than each independent defense method, with an accuracy of
39.73%. This is higher than the combined accuracies from
Trials 4 and 5 with 0.20% and 22.68% respectively. This
could mean that both methods combined have a multiplica-
tive effect on the model’s ability to learn the FGSM attack.
JuanchitoCNN is also much smaller than the other models,
so this could be a factor affecting the efficacy of a hybrid
approach.

4. Conclusion

Our initial objective was to be able to differentiate be-
tween real images and Al-generated imitations. We were
able to find that for the raw images, out-of-the-box models
were incredibly effective with this problem, and that even
a small custom model performed very well. We were then
able to show that these models can be tricked with some ef-
fectiveness with perturbed images, and can be tricked very
effectively with targeted adversarial attacks like FGSM.
This particular problem did not benefit well from adversar-

Original Image

Applied Perturbation, Scaled x5

Perturbed Image

Perturbed Image

Figure 4: Examples of adversarial training images from Ef-
ficientNet, DeiT, and JuanchitoCNN

(a) EfficientNet (b) DeiT

Figure 5: Loss curves over 4 different training scenarios.
ial FGSM defenses, which is a concern for image detection

problems and a potential avenue for future research to de-
termine more effective adversarial defenses.

(c¢) JuanchitoCNN

5. Work Division

Student Name

Contributed Aspects

Details

Juan Raul de la Guardia

Pong-Ravee Halelamien

Ethan Maluhia Roberts

Anna Zhu

Custom CNN model, FGSM attack
and defense implementation, EDA,
visualizations

EfficientNet model, Datal.oader,
EDA, hyperparameter tuning script,
and Integration

ViT model, integration, tuning

Data augmentation, test data pertur-
bation, research, analysis, report

Explored the sizes of human vs Al images. Built the
custom CNN classifier, JuanchitoCNN, and obtained all
relevant information. Implemented the FGSM attack
method, as well as the FGSM training method. Imple-
mented the adversarial visualizations.

Created the dataloader objects and methods, imple-
mented EfficientNet-B0, explored the colorspace of Hu-
man vs. Al images, and integrated the 3 models to
streamline training, evaluation and testing. Additionally
created hyperparameter tuning script to automate a grid
search.

ViT implementation, benchmarking, hyperparameter tun-
ing, and analysis. Contributions to FGSM attack and
training methods. Implemented the loss curve visualiza-
tions.

Built import file and data perturbation and augmentation
class. Integrated with dataloader. Created architectural
model for the custom CNN. Research, analysis , and at-
tack/defense strategy on all models. Report writing and
compiling.

Table 4: Contributions of team members.

Appendices

Github Code Repository
https://github.com/HaoleHawaiian/real_or_rendered

Random Perturbation Test Input

Table 5: Testing Different Perturbations on Test Input

Model SaltPepper Posterize GaussianNoise RandomShadow
EfficientNet-BO 77.62% 92.03% 99.42% 99.73%
DeiT-tiny distilled 91.52% 91.44% 91.56% 91.64%
JuanchitoCNN 49.91% 81.41% 80.20% 84.38%

https://github.com/HaoleHawaiian/real_or_rendered

count
mean
std
min
25%
50%
75%

count
mean
std
min
25%
50%
75%

Unnamed: 0

39975.000000

39975.000000

23079.8656584

1.000000

19922.000000

39975.000000

59962.000000

79949.000000

Unnamed: 0

39975.000000

39974.000000

23079.865684

0.000000

19987.000000

329974.000000

59961.000000

79948.000000

mean_L

39975.000000

146.776671

46116225

2.360855

114.490928

146136292

182.357021

253.824284

mean_L

39975.000000

148.573973

40212712

6.866946

121.376182

142.499405

177.010490

252.963859

label
39575.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0

label
39975.0
1.0

0.0

1.0

1.0

1.0

1.0

1.0

39975.000000

89.925531

47.567583

0.000000

54521532

82.787417

118.649261

253.614965

39975.000000

137.351767

49.526160

0.000000

103.243835

140.9072380

174.163402

254.937467

height

width

39975.000000 39975.000000

568.553171
115956644
112.000000
512.000000
512.000000
640.000000

768.000000

height

716.566654

101.020640

320.000000

762.000000

768.000000

768.000000

768.000000

width

39975.000000 39975.000000

569.553171
112956644
112.000000
512.000000
512.000000
640,000000

768.000000

mean_ V
39975.000000
169.534170
45391519
3.063568
139763800
172.986697
204.771987

254682362

mean_ V
39975.000000
180.029285
38.227437
8.237147
157.312074
183.798457
207.9555590

254.917808

716.566654

101.020640

320.000000

763.000000

768.000000

768.000000

763.000000

mean_R
39975.000000
156.803924
49825308
1.417531
122.062265
158.676729
196.142964

254654482

mean_R
39975.000000
161.332810
43.848655
3.926692
133.833668
163.415665
193.226799

254.434491

mean_G mean_B mean_H

39975.000000 39975.000000 39975.000000

147.628319 136.061878 76.685995

46.040022 51.716847 43.236724

0.559710 0.786140 0.000000

116.780933 93.112755 41.795277

148.468516 137.466743 71.555748

182.044325 176.288166 106187693

253.695998 253.833737 251.272612

mean_G mean_B mean_H

39975.000000 39975.000000 39975.000000

154419127 133.904841 69106661

40.495451 50.819635 33.029289

4.089351 0.797383 0.000000

129.254881 98.536690 43.986773

156.721370 136.055617 65.010434

182819714 171.645973 89105704

254826549 252.968859 242346323

mean LAB L mean LAB A mean_LAB B

39975.000000
155.812541
45.009062
1.436513
126.219092
157.293921
189.863348

253.999756

mean_LAB L
39975.000000
161.994396
38.345730
5.844866
128499134
164.047429
189.084368

252.986606

39975.000000 39975.000000
131.275920 135933158
8.470430 13448593
66.284365 55.136851
127.598007 128.304836
130327924 134.334330
134.464073 142.625612

201.765755 216.375511

mean LAB A mean LAE B
39975.000000 39975.000000
130470514 139.920640
9.775796 15462648
52.540156 48,397239
126.087752 130.535018
130.1017463 138.307513
134.757108 148.431582

215.553397 222.299674

mean_Y
39975.000000
149.056143
45,685650
1.742449
117.610926
149.183668
183.606916

253.885545

mean_Y
39975.000000
154.154311
39.243437
7.201032
128117772
155.225373
181.681780

2529685859

Figure 6: Summary statistics f0§Real and Al-Generated Images.

mean_L
39975.000000
146.776671
46.116225
2.360855
114.490028
146.136292
182.357021

253824284

mean_L
39975.000000
148.573973
40.212712
6.860946
121.376182
148.499405
177010490

252968859

mean_Cr
39975.000000
133.533449
13.343410
31.092480
127.586357
132.436019
139.640504

239.112386

mean_Cr
39975.000000
133.122460
15.323422
29.707807
126411771
133.136180
141.260131

238436712

mean_S
39975.000000 3¢
89.925531
47.567583
0.000000
34.521532
82.787417
113.649261

253.614965

mean_S
39975.000000 3¢
137.351767
49.526160
0.000000
103.243885
140.907280
174.163402

254.937467

mean_Ch
39975.000000
120.663378
13.941145
13.891088
114.172743
122171808
127.866212

204.345701

mean_Ch
29975.000000
116.574152
17.238611
1.147952
107.954673
118.481457
126.218843

220.3857%4

Proportion of Pixels Proportion of Pixels Proportion of Pixels Proportion of Pixels Proportion of Pixels Proportion of Pixels

Proportion of Pixels

R - Label 0

Channel-wise Histograms by Label

R - Label 1

0.150 +

0.125 §

0.100 4

0.075 +

0.050 +

0.025 +

0.000

G - Label 0

G - Label 1

0.150 +

0.125 §

0.100 4

0.075 4

0.050 +

0.025 +

0.000

B - Label O

B - Label 1

0.150 +

0.125 §

0.100 +

0.075 4

0.050 4

0.025 +

0.000 +

H - Label 0

H - Label 1

0.150 §

0.125 +

0.100 +

0.075 §

0.050 4

0.025 +

0.000 +

L-Label 0

L-Labell

0.150 +

0.125 +

0.100 +

0.075 §

0.050 4

0.025 4

0.000 +

S - Label 0

S - Label 1

0.150 +

0.125 +

0.100 +

0.075 4

0.050 +

0.025 4

0.000 +

V - Label 0

V - Label 1

0.150 7

0.125 4

0.100 +

0.075 +

0.050 +

0.025 4

0.000 +

50

T T
100 150
Pixel Value (0-255)

Figure 7: Histogram of RGB Channédl§ for Real and Al-Generated Images.

T T
200 250 0 50

T T
100 150
Pixel Value (0-255)

T T
200 250

Image:0

Image:1

Image:2

Image:3

Image:4

Image:0

Original Image

Original Image

Original Image

Original Image

Applied Perturbation, Scaled x5 Perturbed Image

Original Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5 Perturbed Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5 Perturbed Image

Applied Perturbation, Scaled x5 Perturbed Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Image:0

Z4
Y

Image:0

Image:1

Original Image Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Original Image Applied Perturbation, Scaled x5

Original Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Perturbed Image

Perturbed Image

Image:0

Original Image

Original Image

Original Image

Image:1

Original Image

Original Image

Applied Perturbation, Scaled x5 Perturbed Image

Applied Perturbation, Scaled x5 Perturbed Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Figure 8: Examples of adversarial images on base model from EfficientNet, DeiT, and JuanchitoCNN

Applied Perturbation, Scaled x5

Perturbed Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Figure 9: Examples of adversarial images on augmented model from EfficientNet, DeiT, and JuanchitoCNN

11

Original Image Applied Perturbation, Scaled x5

Image:0

Applied Perturbation, Scaled x5

Image:1

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Perturbed Image

ALY
|

Original Image

Original Image

Original Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Perturbed Image

Perturbed Image

Original Image

Original Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Perturbed Image

Perturbed Image

Perturbed Image

Figure 10: Examples of adversarial images on adversarial model from EfficientNet, DeiT, and JuanchitoCNN

Original Image Applied Perturbation, Scaled x5

=)
o
=)
©
E

Original Image

Applied Perturbation, Scaled x5

Image:1

Original Image Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Perturbed Image

Perturbed Image

Image:0

Image:1

Image:2

Original Image

~
0

Y82

Original Image

&

Original Image

Original Image

Image:4

Original Image

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation

, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Perturbed Image

D

R,

Perturbed Image

&

Perturbed Image

Perturbed Image

Original Image

Original Image
|

Original Image

Original Image

Perturbed Image

A
S

Original Image

Image:3

Image:4

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Applied Perturbation, Scaled x5

Perturbed Image

Perturbed Image

\\«; I,

Perturbed Image

Figure 11: Examples of adversarial images on augmented and adversarial model from EfficientNet, DeiT, and JuanchitoCNN

12

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khved-
chenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A.
Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020. 3, 4

Juan Raul de la Guardia, Pong ravee Halelamien,
Ethan Roberts, and Anna Zhu. Breaking gradi-
ents. https://github.com/HaoleHawaiian/
Breaking_Gradients. 4

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2021. google/vit-base-patch16-224. 2, 4

Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung,
Nicolas Papernot, Alex Kurakin, Ian Goodfellow, and Jascha
Sohl-Dickstein. Adversarial examples that fool both com-
puter vision and time-limited humans, 2018. 1

Ilya Figotin. Imagenet 1000 (mini), 2020. Accessed: (25
April 2025). 3

Stanislav Fort. Multi-attacks: Many images + the same ad-
versarial attack — many target labels, 2023. 1

Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness, 2022. 5

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples, 2015. 1, 2,
3

Nathan Inkawhich. Adversarial example generation, 2025.
Accessed: (14 April 2025). 2

Kaggle. Detect ai vs. human-generated images. NumPy
v1.26 Manual, 2025. Accessed: (3 March 2025). 1, 2

Zico Kolter and Aleksander Madry. Adversarial training,
solving the outer minimization, 2025. Accessed: (20 April
2025). 2

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks, 2019. 4

Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks?, 2022. 4
Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adver-
sarial attacks and defenses in deep learning. FEngineering,
6(3):346-360, 2020. 1

Alessandra Sala, Manuela Jeyaraj, Toma Ijatomi, and Mar-
garita Pitsiani. Ai vs. human-generated images, 2025. Ac-
cessed: (3 March 2025). 1

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter, 2020. 2

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020. 2
Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

13

(19]

(20]

(21]

(22]

(23]

data-efficient image transformers ‘i& distillation through at-
tention, 2021. google/vit-base-patch16-224. 2, 4

Florian Tramer, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. The space of transferable ad-
versarial examples, 2017. 1, 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2023. 2

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A. Efros. Cnn-generated images are sur-
prisingly easy to spot... for now, 2020. 2

Bo Yang, Kaiyong Xu, Hengjun Wang, and Hengwei Zhang.
Random transformation of image brightness for adversarial
attack, 2021. 4

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish
Rawat. Efficient defenses against adversarial attacks, 2017.
1,4

https://github.com/HaoleHawaiian/Breaking_Gradients
https://github.com/HaoleHawaiian/Breaking_Gradients

